
No Frills Magento Layout

Alan Storm

April 2011

Contents

0 No Frills Magento Layout: Introduction 5
0.1 Who this Book is For . 6
0.2 No Frills . 6
0.3 Installing Modules . 7
0.4 Parting Words . 7
0.5 Bugs in the Book . 8
0.6 About the Author . 9
0.7 Let’s Go . 9

1 Building Layouts Programmatically 10
1.1 Template Blocks . 11
1.2 Template Files . 11
1.3 Back to our Template . 11
1.4 Nesting Blocks . 11
1.5 Advanced Block Functionality . 11
1.6 Block Methods . 11
1.7 Enter the Layout . 11

1.7.1 What’s a Singleton!? . 11
1.8 Back to the Code . 11
1.9 Who’s the Leader . 11
1.10 Method Chaining . 11
1.11 A Full Page Layout . 11
1.12 Initializing the Layout and Setting Content 11
1.13 Insert vs. Set . 11
1.14 Getting a Reference and Text List 11
1.15 A Recap and a Dilema . 11

2 XML Page Layout Files 12
2.1 Hello World in XML . 13
2.2 An Interesting use of the Word Simple 13
2.3 Adding the XML, Generating the Blocks 13
2.4 Getting a Little More Complex 13
2.5 Action Methods . 13

1

CONTENTS

2.6 References and the Importance of text lists 13
2.7 Layout Updates . 13
2.8 What’s an Update . 13

2.8.1 What’s a ”Model” . 13
2.9 Adding our Updates . 13
2.10 Fully Armed and Operational References 13
2.11 Removing Blocks . 13

2.11.1 Before (Figure 2.3) . 13
2.11.2 After (Figure 2.4) . 13

2.12 What’s Next . 13

3 The Package Layout 14
3.1 The Why and Where of the Package Layout 15
3.2 Package Layout Examples . 15
3.3 What is a Handle? . 15
3.4 Rendering a Magento Layout . 15
3.5 Getting a Handle on Handles . 15
3.6 More local.xml . 15
3.7 Adding Other Handles to the Page Layout 15
3.8 Package Layout Term Review . 15

3.8.1 Package Layout . 15
3.8.2 Page Layout . 15
3.8.3 Layout Update XML Fragment 15

4 Bringing it All Together 16
4.1 How a Magento Layout is Built 16
4.2 What is the Page Layout . 16
4.3 Rendering a Layout . 16

5 Advanced Layout Features 17
5.1 Action Paramaters . 18
5.2 Translation System . 18
5.3 Conditional Method Calling . 18
5.4 Dynamic Paramaters . 18
5.5 Ordering of Blocks . 18
5.6 Reordering Existing Blocks . 18
5.7 Template Blocks Need Not Apply 18
5.8 Block Name vs. Block Alias . 18
5.9 Skipping a Child . 18

6 CMS Pages 19
6.1 Creating a Page . 20

6.1.1 Page Information : Page Title 20
6.1.2 Page Information : URL Key 20
6.1.3 Page Information : Store View 20
6.1.4 Page Information : Status 20

Copyright c©2011 Pulse Storm LLC 2

CONTENTS

6.1.5 Content: Content Heading 20
6.1.6 Content: Editor . 20
6.1.7 Meta : Keywords . 20
6.1.8 Meta : Description . 20
6.1.9 Design : Layout . 20
6.1.10 Design : Layout Update XML 20
6.1.11 Design : Custom Design 20

6.2 CMS Page Rendering . 20
6.3 Index Page . 20
6.4 What You Need to Know . 20
6.5 Where’s the Layout? . 20
6.6 Adding the CMS Blocks . 20
6.7 Setting the Page Template . 20
6.8 Rendering the Content Area . 20
6.9 Page Content Filtering . 20
6.10 Filtering Meta Programming . 20

7 Widgets 21
7.1 Widgets Overview . 21
7.2 Adding a Widget to a CMS Page 23
7.3 CMS Template Directives . 25
7.4 Adding Data Property UI . 26
7.5 Widget Templates . 28
7.6 Instance Widgets . 31
7.7 Creating an Instance Widget . 31
7.8 Inserting a Widget . 33
7.9 Behind the Scenes . 34
7.10 Restricting Blocks. 35
7.11 Per Theme Widget Config . 37
7.12 Wrap Up . 37

A Magento Block Hierarchy 38

B Class Aliases 39
B.1 Why so Complicated? . 40
B.2 What Class? . 40
B.3 Class Rewrites . 41

C Creating Code Modules 42
C.1 Adding a Module . 42
C.2 Enabling your Module . 42
C.3 Next Steps . 42

D Block Action Reference 43

E Theme and Layout Resolution 44

Copyright c©2011 Pulse Storm LLC 3

CONTENTS

E.1 Template Resolution . 44
E.2 The Base Package . 44
E.3 Layout Files . 44

F The Hows and Whys of Clearing Magento’s Cache 45

G Magento Setters and Getters 46
G.1 Getter and Setter . 46
G.2 Other Magic Methods . 46

H Widget Field Rendering Options 47
H.1 Creating Your Own Form Elements 47
H.2 Advanced Examples . 47

I System Configuration Variables 48

J Magento Connect 49
J.1 What is an Extension . 49
J.2 Installing Extensions: The GUI Way 49
J.3 Installing Extensions: The Command Line Way 49

J.3.1 Magento Connect CLI install for Magento 1.42 49
J.3.2 Magento Connect CLI install for Magento 1.5+ 49

Copyright c©2011 Pulse Storm LLC 4

Chapter 0

No Frills Magento Layout:
Introduction

If you’re reading this intro, chances are you know something about Magento.
Maybe you’ve chosen it for your new online store, maybe it’s been chosen for
you, or maybe you’re just the curious type. Whatever the reason you’ve kicked
the tires, liked what you’ve seen, and ran to this book for help once you opened
the hood.

Magento isn’t just a shopping cart. It’s an entire system for programming
web applications and performing system integrations. The PHP you see here is
not your your father’s PHP. It’s probably not even your PHP. Magento takes
enterprise java patterns and applies them to the PHP language. More than any
system available today, it’s pushing the limits of what’s possible with object
oriented PHP code.

When it comes to layout engines, Most PHP MVC systems use a simple outer-
shell/inner-include approach. Magento does not. At the top of the Magento
view layer there’s a layout object, which controls a tree of nested block objects.
Magento uses a domain specific programming language, implemented in XML,
to create, configure, and render this nested tree of block objects into HTML.
This layer is separate from the rest of the application, allowing non-PHP devel-
opers an unprecedented level of power to change their layouts without having
to touch a single line of PHP code.

If the above paragraph was greek to you don’t worry, you’re not alone. With
all that power available there’s a learning curve to Magento that can be hard
to climb by yourself. This book is your guide up that learning curve. We’ll tell
you what you need to know to quickly become a Magento Layout master.

5

CHAPTER 0. NO FRILLS MAGENTO LAYOUT: INTRODUCTION

0.1 Who this Book is For

This book is for interactive developers and software engineers who want to fully
understand Magento’s XML based Layout system.

By interactive developer we mean someone who both designs online experi-
ences, and implements them using a mix of HTML/CSS/Javascript and some
glue/template programming in a dynamic language like PHP, ruby, python, or
one of those language’s many template systems. There are parts of the book
where we’ll dive in depth into how a particular system is built, but only so that
you can better understand the context of where and when to use it. Designer-
coders are quickly taking over the agency world, and this book seeks to give
them the tools they need to succeed.

Software engineer always seemed a fancier title than most jobs entail, so substi-
tute software developer, of even PHP developer, if you’re uncomfortable with
engineer. Chances are if you work for a shop that does more than just crank
out web stores you’re going to be asked to extend, enhance, and generally abuse
Magento, including the Layout system. In teaching you the practical, this book
will also teach and inform on the engineering assumptions of the Layout sys-
tem. After reading through this book you’ll not only understand how to use
the Layout system, you’ll understand why it was built the way it was, which in
turn will help you make better engineering decisions on your own project.

This book assumes some basic PHP and Magento knowledge. If you haven’t
already done so, reviewing the Magento Knowledge Base, as well as the addi-
tional articles on the author’s website will help you get where you need to with
Magento.

http://www.magentocommerce.com/knowledge-base

http://alanstorm.com/category/magento

You don’t need to be a Magento master, but you should be passably familiar with
the application. If you aren’t, you will be by the time you’re done! While the
main text of the Book is focused on the Layout and related systems, whenever
a deeper knowledge of Magento is needed the Appendixes will give you the
overview you need to keep working.

0.2 No Frills

Why No Frills? Because we tell you what you need to know, and nothing more.
Mandated book lengths make sense in a physical retail environment, but with
the internet being the preferred way of distributing technical prose, there’s no
need to pad things out.

With that in mind, lets get started!

Copyright c©2011 Pulse Storm LLC 6

CHAPTER 0. NO FRILLS MAGENTO LAYOUT: INTRODUCTION

0.3 Installing Modules

This book was distributed with an archive containing several versions of a Ma-
gento module named Nofrills Booklayout. If you want to add code to a Magento
system, you create a module. The Nofrills Booklayout module is where the ex-
ample code in this book will go. You’ll be building this module up as you go
along. For each chapter in the book, we’ve included the module as it should be
at the start of the chapter, and how it should be at the end.

You’ll also find a copy of each and every code example in the code/all folder.
If you don’t want to manually type in code examples from the book, copy and
paste the contents of these files into your source code editor.

There are two ways to install the module. The first is manually. If you extract
the files, you’ll see a folder structure like
app/code/local/Nofrills_Magento

app/module/etc/Nofrills_Magento.xml

app /.....

The archive structure mirrors where the files should be placed in your system.
This is the standard layout of a Magento extension. Place the files in the same
location on your own installation, clear your cache, and the extension will be
loaded into the system on the next page request. For more background, read
the Magento Controller Dispatch and Hello World article online

http://alanstorm.com/magentocontrollerhello world

If you’re not up for a manual instal, each archive is also a fully valid Magento
Connect package. Magento Connect is Magento Inc’s online marketplace of free
extensions. It’s also a package management system. For background on Magento
Connect and instructions for installing its packages, please see Appendix J.

0.4 Parting Words

A few last things before we start. Magento has a special operating mode called
DEVELOPER MODE. When running in DEVELOPER MODE Magento is less tolerant of small
coding errors, and will not hide fatal errors and uncaught exceptions from the
end user. You’d never want to run a production store in DEVELOPER MODE, but it
can make working with and learning the system much easier. You’ll want to
turn DEVELOPER MODE on while working your way through this book. You can do
this by either

1. Adding SetEnv MAGE IS DEVELOPER MODE 1 to your .htaccess file

2. Alternately, editing index.php

If you choose the second option, look for lines in your index.php file something
like

Copyright c©2011 Pulse Storm LLC 7

CHAPTER 0. NO FRILLS MAGENTO LAYOUT: INTRODUCTION

if (isset($_SERVER[’MAGE_IS_DEVELOPER_MODE ’])) {

Mage:: setIsDeveloperMode(true);

}

You’ll want to make sure the Mage::setIsDeveloperMode(true); call is made. Also,
while you’re in index.php, it’d be a good idea to tell PHP to show errors by
changing this

#ini_set(’ display_errors ’, 1);

to this

ini_set(’display_errors ’, 1);

Seemingly invisible errors are one of the most frusting things for a developer
new to any system. By configuring Magento to fail fast we’ll be setting ourselves
up to better learn what needs to be done for any given task.

Magento’s a fast changing platform, and while the concepts in this books will
apply to all versions the specifics may change as Magento Inc changes its focus.
It should go without saying you should run the exercises presented here on
a development or testing server, and not your production environment. The
following legal notice is the fancy way of saying that

THIS BOOK AND SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES ,

INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL ,

EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE ,

DATA , OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS BOOK AND SOFTWARE , EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

0.5 Bugs in the Book

If you’re having trouble working your way through the examples, post a detailed
question to the programming Q&A site Stack Overflow

http://stackoverflow.com/tags/magento

with the following tags

magento magento -nofrills

We’ll be monitoring the site for any problems with code examples, and by asking
your questions in a public forum you’ll be helping the global Magento developer

Copyright c©2011 Pulse Storm LLC 8

CHAPTER 0. NO FRILLS MAGENTO LAYOUT: INTRODUCTION

community. Developers are often amazed when they find people across the world
are having the same problems they are, and often already have a solution ready
to share.

Additionally, each chapter will contain a link to a site online for discussions
specific to each chapter. You’re not just getting a book, you’re joining a com-
munity.

0.6 About the Author

No Frills Magento Layout was written by Alan Storm. Alan’s an industry
veteran with over 12 years on-the-job experience, and an active member of the
Magento community. He’s written the go-to developer documentation for the
Magento Knowledge Base, and is the author of the popular debugging extension
Commerce Bug. You can ready more about Alan and his Magento products at
the following URLs

http://alanstorm.com/

http://store.pulsestorm.net/

0.7 Let’s Go

That’s it for pleasantries, let’s get started. In the first chapter we’re going to
start by creating Magento layouts using PHP code.

Visit http://www.pulsestorm.net/nofrills-layout-introduction to join the discus-
sion online.

Copyright c©2011 Pulse Storm LLC 9

Chapter 1

Building Layouts
Programmatically

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

10

CHAPTER 1. BUILDING LAYOUTS PROGRAMMATICALLY

1.1 Template Blocks

1.2 Template Files

1.3 Back to our Template

1.4 Nesting Blocks

1.5 Advanced Block Functionality

1.6 Block Methods

1.7 Enter the Layout

1.7.1 What’s a Singleton!?

1.8 Back to the Code

1.9 Who’s the Leader

1.10 Method Chaining

1.11 A Full Page Layout

1.12 Initializing the Layout and Setting Content

1.13 Insert vs. Set

1.14 Getting a Reference and Text List

1.15 A Recap and a Dilema

Copyright c©2011 Pulse Storm LLC 11

Chapter 2

XML Page Layout Files

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

12

CHAPTER 2. XML PAGE LAYOUT FILES

2.1 Hello World in XML

2.2 An Interesting use of the Word Simple

2.3 Adding the XML, Generating the Blocks

2.4 Getting a Little More Complex

2.5 Action Methods

2.6 References and the Importance of text lists

2.7 Layout Updates

2.8 What’s an Update

2.8.1 What’s a ”Model”

2.9 Adding our Updates

2.10 Fully Armed and Operational References

2.11 Removing Blocks

2.11.1 Before (Figure 2.3)

2.11.2 After (Figure 2.4)

2.12 What’s Next

Copyright c©2011 Pulse Storm LLC 13

Chapter 3

The Package Layout

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

14

CHAPTER 3. THE PACKAGE LAYOUT

3.1 The Why and Where of the Package Layout

3.2 Package Layout Examples

3.3 What is a Handle?

3.4 Rendering a Magento Layout

3.5 Getting a Handle on Handles

3.6 More local.xml

3.7 Adding Other Handles to the Page Layout

3.8 Package Layout Term Review

3.8.1 Package Layout

3.8.2 Page Layout

3.8.3 Layout Update XML Fragment

Copyright c©2011 Pulse Storm LLC 15

Chapter 4

Bringing it All Together

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

4.1 How a Magento Layout is Built

4.2 What is the Page Layout

4.3 Rendering a Layout

16

Chapter 5

Advanced Layout Features

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

17

CHAPTER 5. ADVANCED LAYOUT FEATURES

5.1 Action Paramaters

5.2 Translation System

5.3 Conditional Method Calling

5.4 Dynamic Paramaters

5.5 Ordering of Blocks

5.6 Reordering Existing Blocks

5.7 Template Blocks Need Not Apply

5.8 Block Name vs. Block Alias

5.9 Skipping a Child

Copyright c©2011 Pulse Storm LLC 18

Chapter 6

CMS Pages

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

19

CHAPTER 6. CMS PAGES

6.1 Creating a Page

6.1.1 Page Information : Page Title

6.1.2 Page Information : URL Key

6.1.3 Page Information : Store View

6.1.4 Page Information : Status

6.1.5 Content: Content Heading

6.1.6 Content: Editor

6.1.7 Meta : Keywords

6.1.8 Meta : Description

6.1.9 Design : Layout

6.1.10 Design : Layout Update XML

6.1.11 Design : Custom Design

6.2 CMS Page Rendering

6.3 Index Page

6.4 What You Need to Know

6.5 Where’s the Layout?

6.6 Adding the CMS Blocks

6.7 Setting the Page Template

6.8 Rendering the Content Area

6.9 Page Content Filtering

6.10 Filtering Meta Programming

Copyright c©2011 Pulse Storm LLC 20

Chapter 7

Widgets

Consder the following situation. You’re a developer. You have a deep knowledge
of the Magento system. The corporate VP in charge of giving you things to do
runs into your work area and says

I want to add a YouTube video to the sidebar?!

You start explaining layouts, and blocks, and pages, and how they render, and
which XML file he’ll need to edit, or maybe you could add it as a page update
o...

Your boss then gives you that steely, bossy look and says again

I want to add a YouTube video to the sidebar

Most people don’t work on their own cars. Most people don’t harvest or hunt
their own food. And most people don’t want to code their own websites. That’s
the problem widgets set out to solve. In this chapter we’ll give you a full overfull
of the Magento widget system. From using the widgets that ship with Magento,
to creating your own widgets, to understanding how widgets are inserted into
the flow of the Layout.

7.1 Widgets Overview

So, what are widgets?

1. Widgets are Magento Template Blocks

2. Widgets Contain Structured Data

3. Widgets Contain Rules for Building User Interfaces

4. Widgets are formally associated with a number of phtml template files

21

CHAPTER 7. WIDGETS

5. Widgets contain rules that say which blocks in the layout system are
allowed to contain them

Let’s start by building ourselves a minimum viable widget, and inserting it into
a CMS page. We’ll be building our widget in the Nofrills Booklayout module.
You, of course, are free to add widgets to any module you create.

To start with, we need to create a configuration file that will let Magento know
about our widget. Being a newer subsystem of Magento, widgets have their
own custom XML config file which will be merged with the Magento config as
needed. widget config file are named widget.xml, and should be placed in your
module’s etc folder
<!-- #File: app/code/local/Nofrills/ Booklayout /etc/widget.xml -->

<widgets >

</widgets >

There are times where Magento will load the widget config from cache, and
there’s other times where the config will always be loaded from disk. Because
of that, it’s best to always clear the cache when making changes to this file.

We now have an empty widget config. Next, let’s add a node to hold our widget
definition
<!-- #File: app/code/local/Nofrills/ Booklayout /etc/widget.xml -->

<widgets >

<nofrills_layoutbook_youtube type="nofrills_booklayout/youtube">

<name >YouTube Example Widget </name >

<description type="desc">

This wiget displays a YouTube video.

</description >

</nofrills_layoutbook_youtube >

</widgets >

Each second level node in this file tells Magento about a single widget that’s
available to the system. You should take steps to ensure this node’s name is
unique to avoid possible collisions with other widgets that are loaded in the
system from other modules. In this case, the name nofrills layoutbook youtube

should suffice.

It’s the type="nofrills booklayout/youtube" attribute we’re interested in. This de-
fines a block class alias for our widget. We’re telling Magento that the block
class
Nofrills_Booklayout_Block_Youtube

should be used for rendering this widget. The <name/> and <description/> tags
are used for text display in the Magento Admin Console.

Let’s create that class. Add the following file
#File: app/code/local/Nofrills/ Booklayout /Block/Youtube.php

<?php

class Nofrills_Booklayout_Block_Youtube extends Mage_Core_Block_Abstract

Copyright c©2011 Pulse Storm LLC 22

CHAPTER 7. WIDGETS

implements Mage_Widget_Block_Interface

{

protected function _toHtml ()

{

return ’<object width ="640" height ="505" >

<param name="movie"

value="http ://www.youtube.com/v/dQw4w9WgXcQ?fs=1& amp;hl=en_US">

</param >

<param name=" allowFullScreen" value="true"></param >

<param name=" allowscriptaccess" value =" always"></param >

<embed src="http ://www.youtube.com/v/dQw4w9WgXcQ?fs=1& amp;hl=en_US"

type=" application/x-shockwave -flash"

allowscriptaccess =" always" allowfullscreen ="true"

width ="640" height ="505"></embed ></object >’;

}

}

This class is mostly a standard block class. It extends from the Mage Core Block Abstract

class, and we’ve overridden the base toHtml method to have this block return
the embed code for a specific YouTube video. The one difference you’ll notice
is the class definition also has this

implements Mage_Widget_Block_Interface

This line is important. It tells PHP that our class is implementing the widget
interface. If you don’t understand the concept of PHP OOP interfaces, don’t
worry. Just include this line with your widget class. Without it, Magento won’t
be able to fully identify your block as a widget class.

That’s it! We now have a super simple widget. Let’s take it for a spin!

7.2 Adding a Widget to a CMS Page

We’ll need to setup a new CMS Page for our widget. Complete the following
steps

1. Go to CMS ->Pages in the Admin Console

2. Click on Add New Page

3. Enter YouTube Video in the Page Title field

4. Enter example-youtube in the URL Key field

5. Select All Store Views

6. Ensure that Enabled is selected for status

7. Click on the Content tab, and enter a Content Heading, as well as some
text in the editor

8. Click on Save and Continue Edit button

Copyright c©2011 Pulse Storm LLC 23

CHAPTER 7. WIDGETS

9. Load your new page in a browser, at http://magento.example.com/example-
youtube

Now that we’ve got our new page setup, let’s add the widget. Choose the
Content Tab in the CMS Page editing interface, and click on the Show/Hide
Editor (see Figure 7.1)

Figure 7.1

The WYSIWYG editing will disappear and be replaced by an HTML source
editor. More importantly, you’ll have a new list of buttons, one of which is
Insert Widget. Click on this button, and a modal window will come up (see
Figure 7.2)

Figure 7.2

Copyright c©2011 Pulse Storm LLC 24

CHAPTER 7. WIDGETS

If you click on the Widget Type drop-down, you’ll see a list of standard
Magento widgets, with your YouTube Example Widget widget listed last.

Select your widget from the menu and click in Insert Widget. You should
notice the following text has been added to your HTML source

{{ widget type="nofrills_booklayout/youtube"}}

Save your CMS page, and then load the page

http:// magento.example.com/example -youtube

in a your web browser. You should see your embedded YouTube video.

7.3 CMS Template Directives

The {{curly braces}} text is a template directive. When Magento encounters
these, a template engine will kick in. If your widget isn’t displaying correctly
and you want to debug this template engine, hop to the following file

#File: app/code/core/Mage/Widget/Model/Template/Filter.php

...

class Mage_Widget_Model_Template_Filter extends Mage_Cms_Model_Template_Filter

{

...

public function widgetDirective($construction)

{

... widget directives are rendered here ...

}

...

}

Every directive in a CMS page works this way. Just look for the method name
that matches the directive name, followed by the word directive.

widgetDirective

templateDirective

foobazbarDirective

The {{widget}} directive has a useful feature. You can use it to set properties on
your widget block object (see Appendix G: Magento Magic setters and getters).
We can use this to make our widget a bit more useful.

Change your block code so it matches the following, and refresh the CMS page.

<?php

class Nofrills_Booklayout_Block_Youtube extends Mage_Core_Block_Abstract

implements Mage_Widget_Block_Interface

{

protected function _toHtml ()

{

$this ->setVideoId(’dQw4w9WgXcQ ’);

return ’

Copyright c©2011 Pulse Storm LLC 25

CHAPTER 7. WIDGETS

<object width ="640" height ="505" >

<param name=" movie" value="http :// www.youtube.com/v/’ .

$this ->getVideoId () .

’?fs=1&hl=en_US"></param >

<param name=" allowFullScreen" value="true"></param >

<param name=" allowscriptaccess" value =" always"></param >

<embed src="http ://www.youtube.com/v/’ .

$this ->getVideoId () .

’?fs=1&hl=en_US"

type=" application/x-shockwave -flash" allowscriptaccess =" always" ’ .

’allowfullscreen ="true" width ="640" height ="505"></embed >

</object >

’;

}

}

Your CMS page will remain unchanged. We’ve altered the code above to set a
video id data property on the block object, and then used that property in ren-
dering the YouTube embed code. (Remember, data properties are stored with
underscore notation, but the magic methods to fetch them are CamelCased)

Next, remove the following line from your block and reload the CMS page.

$this ->setVideoId(’dQw4w9WgXcQ ’);

Without setting this property, the video will fail to render. So far that’s all
pretty obvious. Next, edit the widget directive so it looks like the following

{{ widget type="nofrills_booklayout/youtube" video_id="dQw4w9WgXcQ"}}

Save the CMS page, and reload the frontend page in your browser. Your video
is back!

The widgetDirective method will parse the directive text for attributes, and if
it finds any they’ll be assigned as data attributes to the widget object. With
this feature, your widgets go from static content renderers to dynamic content
renderers.

7.4 Adding Data Property UI

Of course, the whole point of widgets is that they’re meant as a method of code-
less block adding. While it’s good to know you can edit the widget directives
directly, something more is needed if this feature is going to fulfill its promise.

In your widget config, add a <paramaters/> node as defined below.

<!-- #File: app/code/local/Nofrills/ Booklayout /etc/widget.xml -->

<widgets >

<nofrills_layoutbook_youtube type="nofrills_booklayout/youtube">

<name >YouTube Example Widget </name >

<description type="desc">

This wiget displays a YouTube video.

Copyright c©2011 Pulse Storm LLC 26

CHAPTER 7. WIDGETS

</description >

<!-- START new section -->

<parameters >

<video_id >

<required >1</required >

<visible >1</visible >

<value >Enter ID Here </value >

<label >YouTube Video ID </label >

<type >text </type >

</video_id >

</parameters >

<!-- END new section -->

</nofrills_layoutbook_youtube >

</widgets >

Clear your cache, and then click on the Insert Widget button again. Select
your widget from the drop-down, and you will now see a UI for entering a video
ID, (see Figure 7.3)

Figure 7.3

Enter an ID (we recommend qYkbTyHXwbs to keep with the theme) and click
on Insert Widget. The following directive code should be inserted into the
content area.

{{ widget type="nofrills_booklayout/youtube" video_id="qYkbTyHXwbs"}}

Easy as that, you now have a widget for inserting any YouTube video into any
page. Let’s take a look at the XML we added to our widget config

<parameters >

<video_id >

<required >1</required >

<visible >1</visible >

<value >Enter ID Here </value >

Copyright c©2011 Pulse Storm LLC 27

CHAPTER 7. WIDGETS

<label >YouTube Video ID </label >

<type >text </type >

</video_id >

</parameters >

This node will formally add data paramaters to our widget, and allow us to
specify a field type for data entry. The <video id> tag here does have semantic
value, it’s the name of the attribute that will be added to the directive tag

{{ widget type="nofrills_booklayout/youtube" video_id="[VALUE]"}}

The <required> tag allows a level of data validation, setting this to ”1” will force
the Admin Console user to enter a value before inserting the widget.

The <visible/> node allows you to hide the input field for this data paramater,
and have the inserted widget directive tag automatically include an attribute
every time its used, with a value provided by the <value/> tag. When <visible/>

is set to 1 the <value/> tag will be used as a default ID.

The value in <label> will be used to provide your rendered HTML form with a
label, and <type/> controls what sort of form element is rendered. See Appendix
G for a full list and explanation of form rendering configurations.

Important: Be careful changing data paramaters of a deployed widget. Once
a {{widget...}} directive tag has been added to a CMS page, it become ”de-
tached” from its definition. That is, if we changed the <video id/> above to be
<youtube id/>, our CMS page would still have the

{{ widget type="nofrills_booklayout/youtube" video_id="[VALUE]"}}

widget tag. While this isn’t necessarily a problem, it may cause confusion while
further developing the widget or debugging rendering issues.

7.5 Widget Templates

Looking back at our five defining widget properties

1. Widgets are Magento Template Blocks

2. Widgets Contain Structured Data

3. Widgets Contain Rules for Building User Interfaces

4. Widgets are formally associated with a number of phtml template files

5. Widgets contain rules that say which blocks in the layout system are
allowed to contain them

we can see that we’ve covered 1 - 3. Next up is widget templates.

Copyright c©2011 Pulse Storm LLC 28

CHAPTER 7. WIDGETS

Just like an ordinary block, a widget can be rendered using a phtml template.
Additionally, using the UI rendering features, we can make templates a cus-
tomizable feature of our widget.

Let’s make our YouTube widget a template block. First, we’ll alter our class
so it inherits from the core template block and we’ll removing the hard coded
toHtml method.

#File: app/code/local/Nofrills/ Booklayout /Block/Youtube.php

<?php

class Nofrills_Booklayout_Block_Youtube extends Mage_Core_Block_Template

implements Mage_Widget_Block_Interface

{

}

Next, we’ll add the following parameter to our widget config

<parameters >

<!-- ... -->

<template >

<required >1</required >

<visible >0</visible >

<value >youtube.phtml </value >

<label >Frontend Template </label >

<type >text </type >

</template >

<!-- ... -->

</parameters >

Finally, we’ll add the youtube.phtml to our theme’s template folder. We’re adding
it to the default/default theme here, but if your site’s using a different theme,
make sure you put it in the appropriate location

<!-- #File: app/design/frontend/default/default/template/youtube.phtml -->

<h2>Rick </h2>

<object width="640" height="505">

<param name="movie" value="http :// www.youtube.com/v/’<?php

echo $this ->getVideoId ();?>?fs=1&hl=en_US"></param >

<param name="allowFullScreen" value="true"></param >

<param name="allowscriptaccess" value="always"></param >

<embed src="http ://www.youtube.com/v/<?php

echo $this ->getVideoId ();?>?fs=1&hl=en_US"

type="application/x-shockwave -flash" allowscriptaccess="always"

allowfullscreen="true" width="640" height="505"></embed >

</object >

With all of the above in place (and a cache clear), re-insert your widget. You
should get a widget tag with a template attribute

{{ widget type="nofrills_booklayout/youtube" video_id="qYkbTyHXwbs"

template="youtube.phtml"}}

Reload your frontend page and your configured YouTube video should render
the same as before.

Copyright c©2011 Pulse Storm LLC 29

CHAPTER 7. WIDGETS

Because template blocks store their template as a regular block data para-
mater, all we’re really doing here is adding a new widget data paramater named
<template/>. We hard coded a value (by using an invisible data field), but there’s
no reason we couldn’t make it a truly configurable value. Give the following a
try in your widget config

<template >

<required >1</required >

<visible >1</visible >

<value >youtube.phtml </value >

<label >Frontend Template </label >

<type >select </type >

<values >

<as_video >

<value >youtube.phtml </value >

<label >Embed Video </label >

</as_video >

<as_link >

<value >youtube -as-link.phtml </value >

<label >Link Video </label >

</as_link >

</values >

</template >

Don’t forget to add the new template to your theme

<?php

#File: app/design/frontend/default/default/template/youtube -as -link.phtml

?>

<a href="http :// www.youtube.com/watch?v=<?php

echo $this ->getVideoId ();?>">Watch this!?

Clear your cache and reinsert your widget. You should now see a new drop-
down menu allowing you to pick which template your widget should use, (see
Figure 7.4)

Figure 7.4

Copyright c©2011 Pulse Storm LLC 30

CHAPTER 7. WIDGETS

While it may appear that the template tag is being treated as just another
widget property, when we move outside of CMS based widgets and into In-
stance Widgets, we’ll see that the Instance Widget engine treats this paramater
specially.

7.6 Instance Widgets

If we look back on our list of five things that make a widget

1. Widgets are Magento Template Blocks

2. Widgets Contain Structured Data

3. Widgets Contain Rules for Building User Interfaces

4. Widgets are formally associated with a number of phtml template files

5. Widgets contain rules that say which blocks in the layout system are
allowed to contain them

we can see our explorations have completely ignored number five. So far all
we’ve done is insert a widget into a CMS content area. We also haven’t met
our core widget requirement, which is to allow a non-programming user to add
a widget to any page on the site. This is where Instance Widgets enter the
picture.

So far we’ve been creating one off widgets that can’t be reused. For example, if
we wanted to add the same video to multiple CMS pages, we’d need to manually
insert it into each page. Then, if we wanted to change something about each
widget (say, the ID of that video), we’d need to go to each individual page and
edit the template directive tag

{{ widget type="nofrills_booklayout/youtube" video_id="dQw4w9WgXcQ"}}

With Instance Widgets, we can create and save a widget with a specific set of
data, and then insert that widget into multiple locations on the site. Then, if
we later change the definition of that specific widget, it will be automatically
updated throughout the site.

7.7 Creating an Instance Widget

Navigate to

CMS -> Widgets

in the Admin Console to see a list of all the widgets in your system. We’re going
to add a new one, so click on the Add New Widget Instance button

Copyright c©2011 Pulse Storm LLC 31

CHAPTER 7. WIDGETS

Instance Widget creation is a two step process. First, we need to select the
widget type we’re going to create, as well as which theme the widget will be
added to. Select our YouTube example widget from the drop down menu, and
pick the currently configured theme. We’ll be assuming default/default for the
following examples, (see Figure 7.5)

Figure 7.5

Once you’ve done this, click on the Continue button.

You should now see a two tab editing interface; Frontend Properties, and
Widget Options. Widget Options contains an editing form for all the data
properties for a particular widget, (with the exception of templates). Click on
this tab and add a video id, and then return to the Frontend Properties tab,
(see Figure 7.6)

Figure 7.6

In Frontend Properties you have two option groups. The first allows you to
select a Widget Instance Title, Assign a Store View, and set a Sort Order for
the widget. The Widget Instance Title is used in the Admin Console when
displaying information about the widget (i.e. the listing page), Store View
allows you to specify which Magento Stores a widget appears in.

Let’s save our widget with a title, and select All Store Views. Click on the
Save button, and you’ll be returned to the widget listing page. You should
see your widget listed along with any others that have been added to your
Magento system. Click on the widget row to edit it. You’ll notice you’ve been
brought directly to the second stage, and that the Widget Type and Design
Package/Theme options are un-editable. Once you select these during widget
creation they cannot be changed, (see Figure 7.7)

Copyright c©2011 Pulse Storm LLC 32

CHAPTER 7. WIDGETS

Figure 7.7

7.8 Inserting a Widget

Here’s where Instance Widgets get interesting. At the bottom of the Instance
Widget editing page, there’s an empty option group named Layout Update.
Click the Add Layout Update button, (see Figure 7.8)

Figure 7.8

This drop down menu contains several options, each one describing a particular
set of, or a specific, Magento page. What we’re configuring here is the page or
pages we want to add our Widget Instance to. Select All Pages from this menu,
(see Figure 7.9)

Two more menus have appeared. The first is Block Reference, the second is
Template.

The first menu is defining which block you want to add your Widget Instance
to. Select Main Content Area. The values in the second menu should look fa-
miliar to you. They’re the templates we defined earlier. Select ”Embed Video”,
and then Save you Widget Instance.

Copyright c©2011 Pulse Storm LLC 33

CHAPTER 7. WIDGETS

Figure 7.9

At this point you may receive a message at the top of your Magento admin that
looks something like Figure 7.10.

Figure 7.10

This is Magento telling you that it has detected a change to the system that
requires you to clear your cache. Do this, and then load any page in your site.
You should now see your YouTube video added to the main content area.

7.9 Behind the Scenes

Open up your favorite MySQL browser, and run the following query against
your database

select * from core_layout_update;

+------------------+----------------------+---------+------------+

| layout_update_id | handle | xml | sort_order |

+------------------+----------------------+----------------------+

| 1 | default | [...] | 0 |

+------------------+----------------------+----------------------+

This table contains a list of Layout Update XML fragments, organized by han-
dle. When building the Page Layout for any request, Magento will check this
table after checking the loaded package layout. If it finds any matching han-
dles, they’ll be added to the Page Layout. When you select a value from the
Display On menu, you’re actually telling Magento which handles should be
applied. When you save your Widget Instance, this table is updated. Because
these updates add blocks to other block’s that inherit from core/text list, the
widget blocks are automatically rendered.

Copyright c©2011 Pulse Storm LLC 34

CHAPTER 7. WIDGETS

If you take a look at the Mage Core Model Layout Update::merge method, you can see
the additional call to fetchDbLayoutUpdates

public function merge($handle)

{

$packageUpdatesStatus = $this ->fetchPackageLayoutUpdates($handle);

if (Mage::app()->isInstalled ()) {

$this ->fetchDbLayoutUpdates($handle);

}

return $this;

}

Without an the abstract Layout system, adding a feature like widgets would
have required (at minimum) editing every single controller action, and inserting
blocks into an unknown layout structure. This is the kind of power that sort of
abstraction enables.

Similarly, the list of blocks which you insert a widget into is not hardcoded into
a configuration system. It’s generated automatically. Magento takes the handle
indicated by the Display On drop down, and applies it to the Package Layout
to create a temporary Page Layout. Then, rather than render a page, it looks at
the top level body blocks for that layout to get a list of eligible blocks to display
in the drop-down menu. This means if you add additional structural blocks to a
page via means of custom XML layout files or local.xml, those blocks will show
up in this menu. Again, this sort of thing becomes much easier to implement
when using an abstract layout system.

7.10 Restricting Blocks.

Widget Instances have one more interesting feature. You can actually restrict
which blocks a Widget Instance may be inserted into. Head back to your
widget.xml file, and add the following to your widget’s node

<widgets >

<nofrills_layoutbook_youtube >

<!-- ... -->

<supported_blocks >

<uniquely_named_node >

<block_name >content </block_name >

<template >

<unique_name_one >as_video </ unique_name_one >

<unique_name_two >as_link </ unique_name_two >

</template >

</uniquely_named_node >

<another_uniquely_named_node >

<block_name >left </ block_name >

<template >

<unique_name_one >as_video </ unique_name_one >

<unique_name_two >as_link </ unique_name_two >

</template >

Copyright c©2011 Pulse Storm LLC 35

CHAPTER 7. WIDGETS

</another_uniquely_named_node >

</supported_blocks >

<!-- ... -->

</nofrills_layoutbook_youtube >

</widgets >

Clear your cache and reload the Widget Instance editing page. Your (formerly)
long block menu now only allows you the choice of

Left Column

Main Content Area

In the absence of a <supported blocks/> tag, Magento will display all eligible
blocks for any particular page. However, with this node in place, it will scan
each top level node for a sub-node named <block name> and restrict your choices
to those it finds. In our case above, the blocks are content and left. These
names are the block’s name as defined in the Layout Update XML fragment

<block type="core/text_list" name="content" as="content" translate="label">

You’re also required to specify which, if any, templates are valid for a particular
block. This context sensitive template is a powerful feature. Consider and add
the following change to your widget.xml file

<uniquely_named_node >

<block_name >content </block_name >

<template >

<unique_name_one >as_video </ unique_name_one >

<unique_name_two >as_link </ unique_name_two >

</template >

</uniquely_named_node >

<another_uniquely_named_node >

<block_name >left </ block_name >

<template >

<unique_name_two >as_link </ unique_name_two >

</template >

</another_uniquely_named_node >

Clear your cache and reload the widget editor. You’ll notice that switching
between the content and left block will result in your template choice being
restricted. By using this technique, we’ve prevented a user from accidentally
inserting a full video into the left hand column by restricting the templates they
can use. In essence, each widget definition is an abstract content type, and you
can control how it displays in each section of the site. This is only a few steps
away from some of the advanced content management features of systems like
Drupal.

The values being supplied for the templates (as link and as video) are the names
of the nodes in the <templates/> block up in the <paramaters/> section. This is
what we’ve meant when we said Magento treats this node differently.

Copyright c©2011 Pulse Storm LLC 36

CHAPTER 7. WIDGETS

7.11 Per Theme Widget Config

There’s another feature of the widget engine, in relation to Instances, that you
should be aware of. It’s possible to create fall back configurations for your
widgets on a per theme basis. You’ve probably noticed the default themes
each ship with a widget file.

app/design/frontend/default/default/etc/widget.xml

This file has the same format as the widget.xml in your module. Values in these
files can be used to override the values for Instance Widgets. They do not
apply to widgets inserted into CMS Pages or Static Blocks. In practice, this
is done primarily for the supported blocks feature. Keeping with the generate
principle of separating concerns, a general code module doesn’t, technically,
know which blocks or templates are going to be available for it. By keeping
this information in each theme (Magento’s default widgets ship with all the
<supported blocks/> information in the theme configs), Magento ensures that
any themes which add custom core/test list blocks also have the ability to
allow or deny widgets access to these blocks.

7.12 Wrap Up

And that, in a nutshell, is widgets. We chose to end this books with widgets,
because they appear to be the path forward for Magento content and layout
management. The abstract layout system described in this book is stepping
stone towards larger, more robust content and layout management for Magento.
Less than four years old, Magento is dominating the ecommerce landscape like
no other system. We hope the knowedge and techniques provided here will
help you tame your Magento systems, and allow you to spend less time being
confused by code, and more time serving your customers and building your
businesses.

Visit http://www.pulsestorm.net/nofrills-layout-chapter-seven to join the dis-
cussion online.

Copyright c©2011 Pulse Storm LLC 37

Appendix A

Magento Block Hierarchy

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

38

Appendix B

Class Aliases

Magento uses a factory pattern for instantiating certain objects. Don’t let the
design patterny name scare you though, it’s not that complicated.

In raw PHP, if you wanted to instantiate an object from a class, you’d say
something like

$customer = new Product ();

There’s nothing in Magento stopping you from doing this. However, most of
the Magento core code and its various sub-systems do things a little differently.

In Magento, when you want to instantiate an object from a class, you use code
like this

$customer = Mage:: getModel(’catalog/product ’);

This is calling a static method on the Mage class named getModel. This method
will examine Magento’s configuration, and ask

What model class does the string catalog/product associate with.

Magento will answer back "Mage Catalog Block Product", and then a "Mage Catalog Block Product"

will be instantiated. This catalog/product string is known as the class alias.

Magento uses this instantiation method for

1. Block classes: $layout->createBlock(’foo/bar’)

2. Helper classes: Mage::helper(’foo/bar’)

3. Model classes: Mage::getModel(’foo/bar’),Mage::getModel(’foo/bar’)

The createBlock, helper, and getModel methods are all factories. They make
objects or a particular type.

39

APPENDIX B. CLASS ALIASES

B.1 Why so Complicated?

This may seem like a lot of misdirection for something as simple as a class dec-
laration, but that misdirection brings some benefits along for the ride. It helps
create a type system around classes, Magento itself knows what classes have or
have not been declared at any one time, the shorthand saves some verbosity in
typing, and it helps enable one of Magento’s unique PHP feature, class rewrites
(similar to duck-typing or monkey-patching in the ruby and python communi-
ties)

B.2 What Class?

This is all well and good, but can sometimes leave you wondering what class
alias corresponds to what class definition. The easiest thing to do is use the
free, online demo of Commerce Bug

http:// commercebugdemo . pulsestorm .net/

The class URI lookup tab will let you lookup which class aliases correspond to
which PHP classes for a core system.

The way Magento actually looks up class definitions is via its configuration
system. All the config.xml files in a Magento install are merged into one, large,
global config. This giant tree contains a top level <global/> node that looks
something like this

<config >

<global >

<models >... </ models >

<helpers >...</ helpers >

<blocks >... </ blocks >

</global >

</config >

The first thing Magento does when you use a class alias to instantiate a class is
determine the context (model, helper, block), and then look in an appropriate
node (<models>, <helpers>, and <blocks>).

Next, each of the <models>, <helpers>, and <blocks> contains a number of
”group” nodes

<models >

<catalog >...</ catalog >

<core >...</core >

<page >...</page >

</models >

If you look at a class alias

catalog/product

Copyright c©2011 Pulse Storm LLC 40

APPENDIX B. CLASS ALIASES

The portion to the left of the / is the group name. Magento will use this to
determine which of the group nodes it should look in next.

Finally, each group node contains, at minimum, a class node <class>

<models >

<catalog >

<class >Mage_Catalog_Model </class >

</catalog >

</model >

This node contains the base PHP class name for the model (or helper, or
block) group. This base name in place, the non-group portion of the class alias
is appended to the base class name, with the first letter of each underscored
word uppercased

catalog/product

Mage_Catalog_Model_Product

catalog/product_review

Mage_Catalog_Model_Product_Review

That’s how Magento resolves which PHP class to use for a class alias.

B.3 Class Rewrites

There’s one additional node in the config that Magento will check while looking
up a class name. End users of the system (that means you) may provide a
<rewrite/> node that will tell Magento to replace one class with another. This
is Magento’s famous class rewrite system. Using the following

<models >

<catalog >

<rewrite >

<product_review >Yourpackage_Yourmodule_Model_Someclass </ product_review >

</rewrite >

</catalog >

</model >

would tell Magento that whenever a catalog/product review is instantiated, is
should use a Yourpackage Yourmodule Model Someclass.

Visit http://www.pulsestorm.net/nofrills-layout-appendix-b to join the discus-
sion online.

Copyright c©2011 Pulse Storm LLC 41

Appendix C

Creating Code Modules

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

C.1 Adding a Module

C.2 Enabling your Module

C.3 Next Steps

42

Appendix D

Block Action Reference

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

43

Appendix E

Theme and Layout
Resolution

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

E.1 Template Resolution

E.2 The Base Package

E.3 Layout Files

44

Appendix F

The Hows and Whys of
Clearing Magento’s Cache

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

45

Appendix G

Magento Setters and
Getters

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

G.1 Getter and Setter

G.2 Other Magic Methods

46

Appendix H

Widget Field Rendering
Options

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

H.1 Creating Your Own Form Elements

H.2 Advanced Examples

47

Appendix I

System Configuration
Variables

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

48

Appendix J

Magento Connect

This PDF is a sample, and contains Chapter 0, Chapter 7, and Appendix B.
Get the entire book online!

http://store.pulsestorm.net/products/no-frills-magento-layout

J.1 What is an Extension

J.2 Installing Extensions: The GUI Way

J.3 Installing Extensions: The Command Line
Way

J.3.1 Magento Connect CLI install for Magento 1.42

J.3.2 Magento Connect CLI install for Magento 1.5+

49

